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ARtemp + ARWV + ARclouds + ...

Estimate ARx using radiative kernels




Regress ARx vs. AT,

X = Planck, lapse rate, cloud, etc.
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ARtotal = AF + Atotal AT

l
DRiemp + ARws + ARcouas + ..

Estimate ARx using radiative kernels
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ARtemp + ARwy + ARclouds + ...

Estimate ARx using radiative kernels

examine Atwtal budget for in control
and RCP8.5 models & obs.
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Feedbacks

» Held and Shell decomposition
[J. Climate, 2012]

* Axis change in TOA flux (per degree) due to:
— Planck: uniform warming of surface and
atmosphere, with specific humidity changing to
keep relative humidity constant

— Lapse-rate: differential warming of the surface
and atmosphere, constant RH

— ARH: change in RH

— albedo & clouds: change due to changing
surface albedo and clouds
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* good agreement between ensemble avg. of

control models and observations of Acioud
cloud feedback
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control models and observations of Acioud
Cloud feedback

e given that, hard to imagine that the models are
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¢ }\total,fixed—cloud =-1.87+£0.20 W/m2/K
e translates to ECS of 1.8-2.2°C

* \iotal = }\total,fixed cloud + Acloud
¢ |f }\cloud — +O7 W/mZ/K, theﬂ ECS ~ 3511 .GOC




Back of envelope calculation

* Motal fixed-cloud = -1.87+£0.20 W/m2/K

* translates to ECS of 1.8-2.2°C

* Atotal = Motal fixed cloud + Acloud

* if Acloud = +0.7 W/m2/K, then ECS = 3.5+1.6°C
o if Acioud > O W/m2/K, then ECS > 2°C




Back of envelope calculation

* Motal fixed-cloud = -1.87+0.20 W/m?/K

* translates to ECS of 1.8-2.2°C

* Atotal = Motal fixed cloud + Acloud

* if Adcioud = +0.7 W/m?/K, then ECS ~ 3.5+£1.6°C
o Joud > 0 W/m ’ then ECS > 2°C

\_ This is at least “likely” anc
— perhaps “very likely”




Conclusions

» analysis of CERES TOA flux & models
implies ECS of 3.0+1.4°C (very likely range)

» With fixed clouds, we can have high
confidence in ECS of 1.8-2.2°C

» Evidence of positive cloud feedback is at
least likely, suggesting in turn that ECS >
2°C Is also at least likely
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F1G. 1. Scatterplot of the temperature (AR ), water vapor (AR,), albedo (AR, ), and cloud (AR ,,.4) flux
anomalies vs surface temperature anomaly in the observations (using the ERA-Interim reanalysis). Also
shown are a linear fit to the data and the 95% confidence intervals.
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Fi1G. 3. The zonal average temperature (bottom curves) and water vapor feedbacks (top
curves). Observations are the solid lines (black 1s ERA-Interim and red is MERRA) and the
models are dashed (black dashed 1s the control ensemble and red dashed is the A1B ensemble).
The shading indicates one standard deviation about the average of the control ensemble. Error
bars indicate the 2o uncertainty of the fit for the ERA-Interim calculation at selected latitudes.
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F1G. 4. The zonal average Planck-RH, lapse-rate-RH, and ARH feedbacks (these are from
an alternative decomposition of the feedbacks in which the Planck and lapse-rate feedbacks
also include changes in water vapor needed to maintain constant RH). Observations are the
solid lines (black is ERA-Interim and red is MERRA) and the models are dashed (black
dashed is the control ensemble and red dashed is the A1B ensemble). The shading indicates one
standard deviation about the average of the control ensemble. Error bars indicate the 2o un-
certainty of the fit for the ERA-Interim calculation at selected latitudes.
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